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Abstract
A time-dependent bifurcation model and its control problem are studied.
Firstly, delayed bifurcating transition phenomena with memory effects of the
model with time-dependent parameters varying in either the positive or the
negative direction are analysed. Secondly, a parametric control problem with
feedback for the time-dependent model is investigated. The existence and
stability of dynamical hysteresis cycles are obtained by qualitative analysis
of bifurcation and stability. Finally, an important mechanism for dynamical
hysteresis and pulsing oscillation in parametric control systems is revealed as
the result of delayed bifurcating transitions when the bifurcation parameter
varies periodically across the steady bifurcation value.

PACS numbers: 05.45.−a, 82.40.Bj

1. Introduction

Time-dependent bifurcations with parameters varying with time exist extensively and have
important applications in physics, mechanics, hydrodynamics, chemistry, the life sciences
and engineering. There were many such problems in classical non-linear oscillations with
parametric excitations. Recently, they have attracted more and more attention since Harberman
[1] studied the bifurcation transition and jump phenomena for first- and second-order ordinary
differential equations and Erneux and Mandel [2, 3] studied the semi-classical laser equation
with a saturable absorber. The phenomena occurring in time-dependent bifurcations are
different from those in steady bifurcations, for example, there may exist bifurcating transitions,
jumps, delay and memory effects and dynamical bistability [4–9]. Some of these phenomena
are permitted, for instance, in bistable systems in laser physics [4–6]; but some are harmful, for
instance, in chemistry [7], mechanics and engineering [8]. In addition, the control problem for
time-dependent bifurcations is also proposed and has not been researched extensively to date.
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Time-delay phenomena and pulsing oscillations occur in many control and communication
problems, such as laser pulses [3], the Brusselator in catalytic reactions, singular Hopf
bifurcations and relaxation oscillations in nerve transport activities [9]. Usually, these systems
are non-linear, non-autonomous and difficult to treat even in the cases with slowly varying
parameters. Relaxation oscillations and time-dependent bifurcations in systems with slowly
varying parameters have been investigated by methods of singular perturbation, qualitative
analysis and numerical simulation in the literature (e.g., [10–12]). However, their general
mechanisms are not wholly clear thus far.

In this paper, first a time-dependent bifurcation model is considered, and delayed
bifurcating transition phenomena with memory effects are analysed when the bifurcation
parameter varies with time in a general way. Next, a control problem with time-dependent
parametric feedback for the model is studied. A dynamical hysteresis cycle and its stability
can be found through the qualitative analysis of Hopf–Poincaré bifurcation and the calculation
of the index number. Finally, an important mechanism of pulsing oscillations due to delayed
bifurcating transitions in parametric control systems is revealed.

2. A time-dependent bifurcation model

Consider the following time-dependent bifurcation model:

ẏ = λ(t)(y − yn+1) (1)

where λ(t) is a time-dependent bifurcation parameter and n is a positive integer. There is no
need to assume that λ(t) is a slowly varying parameter in this paper. The steady bifurcation
problem corresponding to equation (1) is given as follows:

ẏ = λ(y − yn+1) (2)

where the steady bifurcation parameter λ is a constant.
Equation (1) or (2) can be used to investigate dynamical mechanisms of some non-

linear oscillators, such as relaxation oscillations of electronic circuits, jump processes of the
heart, on-off systems with memory effects and time-dependent models of insect population.
Equation (1) can also be considered as an active parametric control system with a given control
variable λ(t). The dynamical system given by equation (2) with a linear feedback control{

ẏ = λ(y − yn+1) + z

ż = −y
(3)

is equivalent to a generalized van der Pol-type non-linear oscillator ÿ + λ[(n + 1)yn − 1]ẏ +
y = 0. The dynamical behaviour of system (1) with a general time-dependence of λ(t) and
its parametric control problem have not yet been studied.

The steady bifurcation analysis of equation (2) is given briefly first of all. Let F(λ, y) =
λ(y − yn+1). From F(λ, y) = 0, we know that the equilibrium solutions of equation (2)
are determined by y = 0 and yn = 1 when λ �= 0, and their stabilities can be determined by
the derivative Fy(λ, y) = λ(1 − (n + 1)yn). The whole y-axis contains non-hyperbolic
equilibrium solutions when λ = 0. For example, when n is an even number, equation (2)
has three equilibrium solutions y = 0 and y = ±1 for λ �= 0. When λ < 0, Fy(λ, 0) = λ < 0
and Fy(λ,±1) = −nλ > 0, respectively; hence y = 0 is stable and y = ±1 are both
unstable. When λ > 0, Fy(λ, 0) = λ > 0 and Fy(λ,±1) = −nλ < 0, respectively;
hence y = 0 is unstable and y = ±1 are both stable. Therefore, the steady bifurcations
of equation (2) can be considered as either subcritical or supercritical according to the
bifurcation parameter λ varying in the positive or negative direction, and the steady bifurcation
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Figure 1. The steady bifurcation diagram of equation (2) when n is an even number.

value is λc = 0. Figure 1 shows the steady bifurcation diagram of equation (2) when n is an
even number. Although the number of equilibrium solutions does not vary before and after the
bifurcation occurs, we see that the stability of the equilibrium solutions exchanges suddenly.
Actually, the steady bifurcation of equation (2), which differs from well-known bifurcations
in the literature, is of higher co-dimension and degeneracy. The steady bifurcation of equation
(2) when n is an odd number can be discussed similarly and is omitted here.

Now turn to the time-dependent bifurcation system given by equation (1), which is
a non-linear, non-autonomous system having some different dynamic properties with the
corresponding autonomous one given by equation (2), especially the delayed bifurcating
transition phenomena with memory effects. Because, in general, the bifurcation parameter
λ(t) in equation (1) need not be slowly varying, the usual asymptotic methods or scale
balancing are not applicable. Here, the time-dependent bifurcation problem of equation (1)
can be analysed by means of the integrability in a simpler way.

In order to investigate the relation between the solutions of equations (1) and (2) and
the effect of the time-dependence of λ(t), it is necessary to introduce the following concepts
about bifurcating transitions. Suppose that there is an equilibrium solution y = ys1 of
equation (2), which is stable for λ < λc. Moreover, another equilibrium solution y = ys2

of equation (2) bifurcates from ys1 at λ = λc and is stable for λ > λc. Let y(t) be a solution of
equation (1). If there exists a small quantity δ > 0, and tnc, tnf (tnf � tnc) such that
|y(t) − ys1| < δ for t < tnc and |y(t) − ys2| < δ for t > tnf , then it is seen that the
solution y(t) undergoes a bifurcating transition within δ-extent from ys1 to ys2 in the time
interval (tnc, tnf ). Denote λnc = λ(tnc) and λnf = λ(tnf ); tnc and λnc = λ(tnc) are called
the transition time and the transition value, respectively; (tnc, tnf ) (or (λnc, λnf )) is called the
transition time (or parameter) interval. Usually, tnc, tnf and λnc, λnf are dependent on δ. If
|tnf − tnc| → 0 (or equivalently, |λnf − λnc| → 0) as δ → 0, the bifurcating transition is
called a jump; that is, y(t) varies rapidly from ys1 to ys2 when δ tends to zero. The bifurcating
transition has a memory effect if the transition direction is determined by the initial value
of y(t).

Let λ(t) vary in the positive direction, that is, λ(t) increases monotonically with respect to
t. The bifurcating transition from ys1 to ys2 is delayed if λnc > λc and is advanced if λnc < λc.
Conversely, let λ(t) vary in the negative direction, that is, λ(t) decreases monotonically with
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respect to t. The bifurcating transition from ys2 to ys1 is delayed if λnc < λc and is advanced
if λnc > λc.

In the following proposition, only the cases of even numbers n are considered. The cases
of odd numbers n can be discussed similarly.

Proposition 1. Let n be an even number and y(t) be a solution of equation (1) with
0 < y(0) = y0 < 1 (or −1 < y0 < 0). Denote δ = |y0|. If the bifurcation parameter λ(t)

varies in the positive direction with λ(0) < 0 and δ is small enough, then y(t) undergoes a
bifurcating transition within δ-extent from ys1 = 0 to ys2 = 1 (or −1) in a transition interval
(tnc, tnf ), where tnc is given by∫ tnc

0
λ(s) ds = 0 (4)

and tnf is given by∫ tnf

0
λ(s) ds = −

(
1 +

1

n

)
ln δ. (5)

Moreover, the transition value

λnc = λ(tnc) > λc = 0. (6)

Similar results, except that λnc < λc = 0, can be obtained for the bifurcating transition from
ys2 = 1 (or −1) to ys1 = 0 if λ(t) varies in the negative direction with λ(0) > 0. Therefore,
the bifurcating transitions in both directions are delayed and have memory effects.

Proof. Consider the case of an even number n and 0 < y0 = δ < 1 in detail. Let the
equilibrium solutions of equation (2) be y = ys1 = 0 and y = ys2 = 1 with the stability and
steady bifurcations discussed above. Integrating equation (1) from 0 to t yields

y(t)

δ

[
δn − 1

yn(t) − 1

] 1
n

= exp

(∫ t

0
λ(s) ds

)
. (7)

It follows from equation (7) that 0 < y(t) < 1 for t ∈ (0, +∞) and y(t) → 1 when t → +∞.
Now the dynamical behaviour of y(t) for t ∈ (0, +∞) is considered.

It is obvious from equation (7) that y(t) = δ iff t satisfies∫ t

0
λ(s) ds = 0. (8)

Now, if λ(t) varies in the positive direction with λ(0) < 0, then there is a unique tnc

satisfying equation (8) such that y(tnc) = δ. Hence, tnc is determined by equation (4).
Since

∫ t

0 λ(s) ds < 0 for t ∈ (0, tnc), equation (7) leads to

0 < |y(t)| < δ for t ∈ (0, tnc). (9)

Furthermore, it can be shown that λ(tnc) > 0 by equation (4) since λ(0) < 0 by
assumption, and then there is t̄ ∈ (0, tnc) such that λ(t̄) = 0. Hence, noting that 0 <

yn(t) < y(t) < 1 since 0 < y(t) < 1 for t ∈ (0, +∞), it is shown from equation (1)
that ẏ < 0 for t ∈ (0, t̄ ) and ẏ > 0 for t ∈ (t̄ , tnc); that is, y(t) decreases in (0, t̄) and increases
in (t̄, tnc).

Again, it will be shown that

0 < |y(t) − 1| < δ for t ∈ (tnf , +∞) (10)
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where tnf is given by equation (5). In fact, on the one hand, it follows from equation (5) that
tnf satisfies

exp

(∫ tnf

0
λ(s) ds

)
= δ−(1+ 1

n
). (11)

Since λ(t) increases monotonically with respect to t,
∫ tnf

0 λ(s) ds <
∫ t

0 λ(s) ds for t > tnf .
Then equation (11) leads to

δ(1+n) = exp

(
−n

∫ tnf

0
λ(s) ds

)

> exp

(
−n

∫ t

0
λ(s) ds

)
(12)

for t ∈ (tnf , +∞). On the other hand, it follows from 0 < y(t) < 1, 0 < δ < 1 and
equation (7) that

|yn(t) − 1| = yn(t)|δn − 1|
δn

exp

(
−n

∫ t

0
λ(s) ds

)

< δ−n exp

(
−n

∫ t

0
λ(s) ds

)
. (13)

Since 0 < y(t) < 1, from inequalities (12) and (13) it is clear that

|y(t) − 1| < |yn(t) − 1| < δ−nδ(1+n) = δ

for t ∈ (tnf , +∞) and then inequality (10) is proved.
Let δ be small enough so that tnf � tnc. It is concluded from inequalities (9) and (10) that

in this case there is a bifurcating transition of y(t) within δ-extent from ys1 = 0 to ys2 = 1 in
the time interval (tnc, tnf ).

A similar conclusion can be made for the case of −1 < y0 = −δ < 0 with small δ > 0
and λ(t) varying in the positive direction with λ(0) < 0. In this case, −1 < y(t) < 0 for
t ∈ (0, +∞) and y(t) → −1 when t → +∞. Inequalities (9) and (10) still hold, and then
there is a bifurcating transition of y(t) within δ-extent from ys1 = 0 to ys2 = −1 in the time
interval (tnc, tnf ).

In summary, recall that in the above discussion the steady bifurcation value of
equation (2) is λc = 0 and the bifurcating transition value of equation (1) is λnc = λ(tnc) > 0.
Then it is clear that λ(tnc) > λc and the bifurcating transition of y(t) is delayed. The transition
direction of y(t) from ys1 = 0 to ys2 = 1 (or −1) depends on the initial value y(0) > 0
(or <0), so the transition has a memory effect.

Conversely, if λ(t) varies in the negative direction with λ(0) > 0, then similar conclusions
can be made for the bifurcating transition of y(t) from ys2 = 1 (or −1) to ys1 = 0, except that
λnc < λc = 0. Therefore, the bifurcating transition is still delayed and has a memory effect.
This completes the proof. �

The discussion is similar for the cases of odd numbers n.
As an important example, consider the case of λ(t) varying linearly with respect to t; that

is, λ(t) = αt + λ0, where α and λ0 are constants. If α > 0 and λ0 < 0, then λ(t) varies in the
positive direction with λ(0) = λ0 < 0. By equations (9) and (10) it is easy to get

tnc = −2λ0

α
tnf = 1

α

[
−λ0 +

√
λ2

0 − 2α

(
1 +

1

n

)
ln δ

]
. (14)
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Figure 2. Bifurcating transitions of equation (1) in two directions for n = 4.

Obviously,

λnc = λ(tnc) = −λ0 λnf = λ(tnf ) =
√

λ2
0 − 2α

(
1 +

1

n

)
ln δ. (15)

It is seen from equation (15) that λnc > λc = 0 since λ0 < 0, and then the bifurcating transition
of y(t) from ys1 = 0 to ys2 = 1 (or −1) is delayed. Conversely, if α < 0 and λ0 > 0, then λ(t)

varies in the negative direction with λ(0) = λ0 > 0. In this case, tnc, tnf and λnc, λnf are still
given by equations (14) and (15), respectively. It is seen that λ(tnc) < λc since λ0 > 0, and
then the bifurcating transition of y(t) from ys2 = 1 (or −1) to ys1 = 0 is still delayed. The
bifurcating transitions in both the directions have memory effects from the general discussion
in proposition 1; however, they are not jumps since tnf tends to infinity as δ tends to zero by
equation (14).

Figure 2 shows the bifurcating transitions of equation (1) for n = 4. Curve (a) denotes a
bifurcating transition in the positive direction from y = 0 to y = −1, where the time-dependent
bifurcation parameter λ(t) = −2.5 + 0.25t and the initial value y0 = −0.25. Obviously,
λ0 = −2.5, α = 0.25 and δ = 0.25. From equation (15) it is found that λnc = 2.5 > λc = 0
and λnf = 2.67. It is seen that there is a bifurcating transition within δ-extent in the parameter
interval (2.5, 2.67). Curve (b) denotes a bifurcating transition in the negative direction from
y = 1 to y = 0, where λ(t) = 1 − 0.25t and λnc = −1 < λc = 0. It is seen from figure 2
that the bifurcating transitions in both directions are delayed and have memory effects. The
corresponding steady bifurcation diagram is also plotted in figure 2 for comparison.

3. Control of the time-dependent bifurcation model

In the above section, it is seen that the bifurcating transitions of equation (1) for the parameter
λ(t) varying in both the positive and negative directions are delayed and have memory effects.
Now, if λ(t) changes its directions periodically, it can be imagined that the delayed bifurcating
transitions of equation (1) cause a hysteresis cycle, which exhibits a kind of relaxation
oscillation with pulsing behaviour.

In this section, a parametric control problem for the time-dependent bifurcation system (1)
is discussed. Considering a linear feedback control for equation (1) illustrated in figure 3 and
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Figure 3. Illustration of feedback control for equation (1).

Figure 4. Dynamical hysteresis cycle of equation (5) (n = 3).

taking λ(t) as the control variable, the system is described by the following equations:{
λ̇ = a(b + Gλ − cy) ≡ aE(λ, y)

ẏ = λ(y − yn+1) ≡ F(λ, y)
(16)

where n > 0 is an integer, a and b are positive constants, c > 0 is a feedback coefficient and G
is a bifurcation parameter. When G > 0, it will be shown later that the feedback control makes
the parameter λ(t) vary in both the positive and negative directions periodically and yields
a periodic solution of equations (16), which corresponds to a dynamical hysteresis cycle as
depicted in figure 4. In order to discuss the generation of the periodic solution, it is necessary
to deal with the Hopf–Poincaré bifurcation of equations (16).

When G = 0, equations (16) are in fact an integrable system as follows:{
λ̇ = a(b − cy)

ẏ = λ(y − yn+1).
(17)

It has a first integral given by H(λ, y) = 1
2λ2 +

∫
a(cy−b)

y−yn+1 dy = const. The unique equilibrium
point (0, b/c) is a centre. All the other orbits are closed cycles around the centre.
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When G �= 0, equations (16) have three equilibrium points, namely (−b/G, 0),

((c − b)/G, 1) and (0, b/c). In addition, assume that b < c in the following discussion.
There is no closed cycle around the first two equilibrium points because they are saddle
points. As for the third equilibrium point (0, b/c), the Jacobian matrix has a pair of
complex conjugate eigenvalues given by r1,2 = [aG ±

√
(aG)2 − 4ab(1 − (b/c)n)]/2

when |G| < 2
√

b(1 − (b/c)n)/a. The real and imaginary parts are α(G) = aG/2
and β(G) =

√
4ab(1 − (b/c)n) − (aG)2/2, respectively. The equilibrium point (0, b/c)

is a stable focus when −2
√

b(1 − (b/c)n)/a < G < 0 and is an unstable focus when
0 < G < 2

√
b(1 − (b/c)n)/a, but it is a centre when G = 0. The eigenvalues r1,2

become a pair of imaginary eigenvalues when α(G) = 0, that is, G = 0. Since
α(0) = 0 and α′(0) = a/2 > 0,G = Gh = 0 is a Hopf–Poincaré bifurcation value of
equations (16) according to the Hopf–Poincaré bifurcation theorem, and then it can be shown
that for G > 0 small enough and c > b there exists a stable closed cycle of equations (16)
around the equilibrium point (0, b/c); in other words, under this situation λ(t) and y(t) vary
periodically with respect to t. The period of the closed cycle is T ≈ 2π/β(0) for sufficiently
small values of G > 0.

Furthermore, since the stability of the closed cycle can also be determined by calculating
its index number, this leads to the following result:

Proposition 2. Let 0 < G < 2
√

b(1 − (b/c)n)/a, b < c and (λ(t), y(t)) be a closed cycle
of equations (16) with period T around the equilibrium point (0, b/c). Denote the averaged
value of y(t) and λ(t) by y = 1

T

∫ T

0 y(t) dt and λ = 1
T

∫ T

0 λ(t) dt , respectively. Then the
closed cycle is stable when aG2 + nb < ncy (or equivalently, G < nλ/a), and it grows into a
large dynamical hysteresis cycle as the parameter G increases.

Proof. Let the initial value y(0) = y0 of the closed cycle be in (0, 1). Because the second
equation of (16) is just the same as equation (1), it is known from equation (7) that the closed
cycle of equations (16) exists in the strip-shape domain 0 < y < 1.

Integrating the first equation of (16) along the closed cycle in one period gives

λ = − b

G
+

c

G
y. (18)

Dividing both sides of the second equation of (16) by y(t) and then integrating along the
closed cycle in one period, it follows that

λ = 1

T

∫ T

0
λ(t)yn(t) dt . (19)

Thus the index number γ of the closed cycle can be computed by equations (16) and (19)
as follows:

γ = 1

T

∫ T

0

(
a

∂E

∂λ
+

∂F

∂y

)
dt

= 1

T

∫ T

0
[aG + λ(t) − (n + 1)λ(t)yn(t)] dt

= aG − nλ. (20)

Moreover, substituting equation (18) into equation (20) gives

γ = (aG2 + nb − ncy)/G. (21)

Therefore, if aG2 + nb < ncy (or equivalently, G < nλ/a) holds for appropriately chosen
values of a, b, c, n and G > 0, then the index γ < 0 from equation (21) (or equation (20))
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(a)

(b)

Figure 5. Periodic variation of λ(t) and pulsing oscillation of y(t) of equations (16).

and the closed cycle is stable. Especially, since the closed cycle is in the strip-shape domain
0 < y < 1, it follows that 0 < y < 1 and then the feedback parameter G for a stable closed
cycle must satisfy 0 < G < Gcr = √

n(c − b)/a.
Furthermore, as the parameter G increases, the stable limit cycle grows larger and larger

with its amplitude increasing. Because dy/dλ = λ(y − yn+1)/[a(b + λG − cy)] → 0 as
y(t) → 0+ (or y(t) → 1) from equations (16), it is seen that for sufficiently large G > 0
the closed cycle is so large that it is almost tangential to the line y = 0 and the line y = 1
simultaneously. Taking account of the delayed bifurcating transitions between y = 0 and
y = 1, it follows that the closed cycle becomes a dynamical hysteresis cycle as G increases
(see figure 4), where y(t) varies rapidly between y = 0 and y = 1 in the transition intervals
and exhibits pulsing behaviour. This completes the proof. �

Numerical results in figure 5 show the pulsing oscillation of y(t) along with the periodic
variation of the control variable λ(t), which correspond to the dynamical hysteresis cycle of
equations (16) plotted in figure 4. In the computation, n = 3, a = 0.025, b = 10, c = 50 and
G = 0.005. Actually, this means that pulsing oscillations may occur in the feedback control
system (16), even for rather small values of the feedback coefficient G.
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4. Conclusion

Combining the above results, it is seen that time-dependent bifurcations play an important
rôle in time-dependent systems. There exist extensive dynamical phenomena, especially
bifurcating transitions with delay and memory effects. In general, for time-dependent control
systems, there may exist dynamical hysteresis cycles due to the delayed bifurcating transitions
induced by the time-dependent control parameters passing through the steady bifurcation
values periodically, and this leads to the pulsing behaviour of oscillations in the systems.
Hence, an important mechanism for the generation of time-delays and pulsing oscillations in
parametric feedback control systems is revealed.
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